5.9 高级处理-合并
编辑
46
2023-06-09
5.9 高级处理-合并
学习目标
目标
应用pd.concat实现数据的合并
应用pd.merge实现数据的合并
如果你的数据由多张表组成,那么有时候需要将不同的内容合并在一起分析
1 pd.concat实现数据合并
pd.concat([data1, data2], axis=1)
按照行或列进行合并,axis=0为列索引,axis=1为行索引
比如我们将刚才处理好的one-hot编码与原数据合并
# 按照行索引进行
pd.concat([data, dummies], axis=1)
2 pd.merge
pd.merge(left, right, how='inner', on=None)
可以指定按照两组数据的共同键值对合并或者左右各自
left
: DataFrameright
: 另一个DataFrameon
: 指定的共同键how:按照什么方式连接
Merge method | SQL Join Name | Description |
---|---|---|
|
| Use keys from left frame only |
|
| Use keys from right frame only |
|
| Use union of keys from both frames |
|
| Use intersection of keys from both frames |
2.1 pd.merge合并
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
# 默认内连接
result = pd.merge(left, right, on=['key1', 'key2'])
result
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2
左连接
result = pd.merge(left, right, how='left', on=['key1', 'key2'])
result
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A2 B2 C1 D1
3 K1 K0 A2 B2 C2 D2
4 K2 K1 A3 B3 NaN NaN
右连接
result = pd.merge(left, right, how='right', on=['key1', 'key2'])
result
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2
3 K2 K0 NaN NaN C3 D3
外链接
result = pd.merge(left, right, how='outer', on=['key1', 'key2'])
result
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A2 B2 C1 D1
3 K1 K0 A2 B2 C2 D2
4 K2 K1 A3 B3 NaN NaN
5 K2 K0 NaN NaN C3 D3
3 总结
pd.concat([数据1, 数据2], axis=**)【知道】
pd.merge(left, right, how=, on=)【知道】
how -- 以何种方式连接
on -- 连接的键的依据是哪几个
- 0
- 0
-
分享